1. **Yajilin [India - Prasanna Seshadri]**

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.

**Competitor Name:**

Ken Endo
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.

Competitor Name:

Hideaki Jo

Seed: 4

Bracket:

Rank:
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.

Competitor Name: Walker Anderson
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.
1. Yajilin [India - Prasanna Seshadri]

Blacken some white cells and then draw a single closed loop (without intersections or crossings) through all remaining white cells. The loop may not intersect itself, go through a cell corner, or go through a cell more than once. The loop must go through the center of every cell it goes through and all turns in the loop must be at cell centers. Blackened cells cannot share an edge with each other. Some cells are outlined and in gray and cannot be part of the loop. Numbered arrows in such cells indicate the total number of blackened cells along the direction of the arrow, starting in the arrowed cell and going along a row or column to the edge of the grid.

Competitor Name: (spare)
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]
Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

Ken Endo
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competitor Name: Thomas Snyder

Seed: 2

Match Code:
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

2 0 1 9
2
0
1
9
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

<table>
<thead>
<tr>
<th>2</th>
<th>0</th>
<th>1</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competitor Name: Hideaki Jo

Seed: 4
Rank: 2
Bracket: 
Match Code: 
Heat: 

2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

Competitor Name:

Nikola Zivanovic

Match Code:
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]
Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

### Competitor Name:
Kota Morinishii

### Grid:
```
 2 0 1 9
 2
 0
 1
 9
```
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

Competitor Name: Bram de Laat

Match Code:

Seed: 7  
Bracket: 
Rank: 

2 0 1 9
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

Competitor Name: Walker Anderson

Match Code: 2 0 1 9
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]
Blacken some cells in the grid such that each row and each column contains exactly
two blackened cells. Blackened cells may not touch each other, not even diagonally.
The numbers to the left of (or above) the grid are 1 more or 1 less than the number of
unblackened cells between the blackened cells in that row (or column).
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

Competitor Name: Yuki Kawabe

Match Code: 

Seed: 10
Bracket: 

Heat: 
Rank: 

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

```
 2 0 1 9
```

Competitor Name: (spare)
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]
Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).
Competitor Name:
(spare)

2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]
Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

2 0 1 9

4

(spare)
2. Gaps (No Touch, Off by One) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. Blackened cells may not touch each other, not even diagonally. The numbers to the left of (or above) the grid are 1 more or 1 less than the number of unblackened cells between the blackened cells in that row (or column).

Competitor Name: (spare)

Match Code:
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name: Thomas Snyder

Heat: 2
Bracket: 
Seed: 
Rank: 
Match Code: 

4 2 6 2 4
1 3 5
2 3 1 5
3 3 3
1 1 5
3 3
2
5 1 5
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name:

Tomoya Kimura

Match Code:
### 3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

**Competitor Name:**

<table>
<thead>
<tr>
<th>Hideaki Jo</th>
</tr>
</thead>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Skyscrapers Grid](image-url)
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name:

Nikola Zivanovic

Match Code:
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name: Kota Morininishi

4 2 6 2 4
1 3
2 3 5
3 3 1
1 1 5
3 3
2
5 1 5
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name:

Bram de Laat

Match Code:

Heat: 7
Bracket:

Seed: 
Rank:

4 2 6 2 4
1
3
2
3
1
3
2

5 1 5
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Walker Anderson

4 2 6 2 4
1 3
2 3 5
3 3 1
1 1 5
3 3
2
5 1 5
### 3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

**Competitor Name:**

**Match Code:**

Michael Ley

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

```
4 2 6 2 4
   1 3
2 3 5
3 3 1
1 1 5
3 3
2
5 1 5
```
### 3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

**Competitor Name:**

![Yuki Kawabe](image)

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>2</th>
<th>6</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

**Seed:** 10

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Match Code:**

![Match Code](image)
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

### Grid

```
  4 2 6 2 4
  1   3   
 2 3 3 1 
 1   1 5 
 3        
 2
 5 1 5
```

### Competitor Name:

(deleted)

### Match Code:

(deleted)
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name:

(spare)

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>2</th>
<th>6</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Match Code:

Heat: 
Bracket: 
Seed: 
Rank: 

5 1 5
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>6</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competitor Name: (spare)

Heat: 
Bracket: 
Seed: 
Rank: 
Match Code: 
### 3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to $X$ (integers only) into each cell so that each number appears exactly once in each row and column. ($X$ is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

```
  4 2 6 2 4
   1      3
 2   3     5
 3    3    1
 1     1   5
 3        3
 2
     5 1 5
```
3. Skyscrapers [Serbia - Zoran Tanasic]

Place a number from 1 to X (integers only) into each cell so that each number appears exactly once in each row and column. (X is the number of cells in each row.) Each number represents a skyscraper of its respective height. The numbers outside the grid indicate how many skyscrapers can be seen in the respective row or column from the respective direction; smaller skyscrapers are hidden behind higher ones. Some numbers may already be filled in for you.

Competitor Name: (spare)

4 2 6 2 4
1      3
2   3     5
3    3    1
1     1   5
3        3
2
     5 1 5
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:

Ken Endo

---

8 4 10 4 8
6
10
6
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:

Tomoya Kimura
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:

Hideaki Jo

8 4 10 4 8
6
10
6
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:

Nikola Zivanovic

Heat: 5  
Bracket: 
Seed: 
Rank: 
Match Code:
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:

Kota Morininishi

![Parade Sums Grid]

8 4 10 4 8
6
10
6
4. Parade Sums [Russia - Ivan Grishchenko]
Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:
Bram de Laat

Heat: Blank
Bracket: Blank
Seed: 7
Rank: Blank
Match Code: Blank
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name: Walker Anderson
4. Parade Sums [Russia - Ivan Grishchenko]
Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:
Michael Ley
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name: Yuki Kawabe
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name: (spare)
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name:

(spare)

Heat:  
Bracket:

Seed:  
Rank:

Match Code:
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region’s path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.) It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.

Competitor Name: (spare)

Heat: 
Bracket: 
Seed: 
Rank: 
Match Code: 
4. Parade Sums [Russia - Ivan Grishchenko]

Place numbers into some cells, no more than one number per cell, such that all the numbers in each outlined region are in consecutive numerical order (starting with 1) when read starting at the cell with the small arrow and continuing along the region's path. (For example, if there are three numbers in a region, they must be “1”, “2”, and “3”, in that order, possibly with empty cells before, between, or after them.)

It is possible for a region to have no numbers at all. Numbers outside the grid indicate the sum of all numbers in that row or column.
4. Parade Sums [Russia - Ivan Grishchenko]
Place numbers into some cells, no more than one number per cell, such that all the
numbers in each outlined region are in consecutive numerical order (starting with
1) when read starting at the cell with the small arrow and continuing along the
region's path. (For example, if there are three numbers in a region, they must be “1”,
“2”, and “3”, in that order, possibly with empty cells before, between, or after them.)
It is possible for a region to have no numbers at all. Numbers outside the grid
indicate the sum of all numbers in that row or column.
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but **cannot** be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”. 

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name: Thomas Snyder

Match Code:
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but **cannot** be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*

**Competitor Name:**

Tomoya Kimura

---

![Diagram](image-url)
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but **cannot** be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*

Competitor Name:

**Hideaki Jo**
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.  

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*

### Competitor Name:

Nikola Zivanovic

![Pentomino Diagram](image)
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name: Kota Morininishi
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”. 

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name:

Walker Anderson
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”. 

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name: 

Michael Ley

Seed: 9

Match Code:
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but **cannot** be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=.”

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*

---

**Yuki Kawabe**

---

![Pentomino Relations Diagram](image-url)
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but **cannot** be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.  

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*

**Competitor Name:** (spare)
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name: (spare)
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”. 

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name: (spare)

Match Code:
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but cannot be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “= “.

Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.

Competitor Name: (spare)
5. Pentomino Relations [Poland - Jan Mrozowski]

Place the nine supplied pentominoes into the nine grids; one into each grid. Each pentomino must be used exactly once. Pentominoes may be rotated but **cannot** be reflected. The relationship operators between the tiles describe the relationship between the number of cells occupied by pentominoes along that row (or column) on each side of the operator; for example, if each row segment next to an operator had two blackened cells, then the operator would be “=”.

*Note that the ‘X’ shape is not technically a pentomino but should be considered one for purposes of this puzzle.*

Competitor Name: (spare)

---

Heat: Bracket:

Seed: Rank:

Match Code:
6. Tapa [Bulgaria - Deyan Razsadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Ken Endo

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
6. Tapa [Bulgaria - Deyan Razsadov]
Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: Thomas Snyder
6. Tapa [Bulgaria - Deyan Razsadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

**Competitor Name:**

Tomoya Kimura

![Tapa Puzzle](image)
6. Tapa [Bulgaria - Deyan Razaiov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: Hideaki Jo

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
6. Tapa [Bulgaria - Deyan Razsadow]
Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Nikola Zivanovic

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seed: 5
Rank: 
Match Code: 
Heat: 
Bracket: 
6. Tapa [Bulgaria - Deyan Razsadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Kota Morininishi

Heat:  
Bracket:  
Seed: 6  
Rank:  
Match Code:  

2 1  
3 3 1  
1 4  
1 2 1  
1 1 1  
2 3  
1 4 1 3  
4 2 2  
1 3  


6. Tapa [Bulgaria - Deyan Rzasadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Bram de Laat

Seed: 7

Match Code:
6. Tapa [Bulgaria - Deyan Razsadov]
Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: Walker Anderson

Match Code:
6. Tapa [Bulgaria - Deyan Rzasadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Michael Ley
6. Tapa [Bulgaria - Deyan Razsadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: 

Yuki Kawabe
6. Tapa [Bulgaria - Deyan Razsadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: (spare)
6. Tapa [Bulgaria - Deyan Rzasadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: (spare)

Match Code:
Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.
6. Tapa [Bulgaria - Deyan Razsadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:  
(spare)
6. Tapa [Bulgaria - Deyan Raszadov]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: (spare)
6. Tapa [Bulgaria - Deyan Razsadow]
Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.
7. Endpoints (Hex) [Czech Republic & Slovakıa - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Ken Endo
7. Endpoints (Hex) [Czech Republic & Slovkia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name: Thomas Snyder
7. Endpoints (Hex) [Czech Republic & Slovkia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Tomoya Kimura
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]
A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Hideaki Jo

Heat:          Bracket:
Seed:          Rank:
Match Code:
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Nikola Zivanovic
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Kota Morininishi

Seed: 6
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name: Bram de Laat
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Walker Anderson

Heat: 
Bracket: 
Seed: 8 
Rank: 
Match Code: 
7. Endpoints (Hex) [Czech Republic & Slovkia - Matej Uher]
A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Michael Ley
7. Endpoints (Hex) [Czech Republic & Slovakla - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

Yuki Kawabe

Seed: 10

Match Code:
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name: (spare)

Heat: Bracket:
Seed: Rank:

Match Code:
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

**Competitor Name:**

(spare)
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name: (spare)
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name: (spare)

Seed:  
Rank: 
Match Code: 

Heat:  
Bracket: 

7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

(spare)
7. Endpoints (Hex) [Czech Republic & Slovakia - Matej Uher]

A list of available symbols (possibly including a blank symbol), showing ways to connect edges of cells, is provided. Draw a symbol from the list into each cell (one symbol per cell) such that the symbols in each row are all different. Symbols may not be rotated. Each dot touches exactly one symbol (you may think of dots as “endpoints” of symbols). All possible dots (on edges of cells) are given (all endpoints are marked with dots).

The puzzle will use a hexagonal grid, with hexagons as cells and “rows” going in three directions.

Competitor Name:

(spare)
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

**Thomas Snyder**
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

Tomoyea Kimura

Match Code:
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

Competitor Name: Hideaki Jo

Seed: 4
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

Competitor Name: Kota Morinishi
8. Slitherlink [Turkey - Fatih Kamer Anda]
Draw a single, non-intersecting loop that only consists of line segments between the
dots along the dotted lines. A number inside a cell indicates how many of the edges of
that cell are part of the loop.

Competitor Name: Bram de Laat

Match Code: 8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the
dots along the dotted lines. A number inside a cell indicates how many of the edges of
that cell are part of the loop.
8. Slitherlink [Turkey - Fatih Kamer Anda]
Draw a single, non-intersecting loop that only consists of line segments between the
dots along the dotted lines. A number inside a cell indicates how many of the edges of
that cell are part of the loop.

Walker Anderson

2  1  1  0  1  2  1
2  1  2  2  1  1
2  3  2  1  1  1  1
3  1  1  1  1  1  1
1  1  1  1  1  1  1
2  2  2  2  1  1  1
2  3  0  1  2  2  1
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

![Slitherlink Puzzle]

Competitor Name:

Michael Ley
8. Slitherlink [Turkey - Fatih Kamer Anda]
Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

Competitor Name: Yuki Kawabe
Seed: 10
Heat: 
Bracket: 
Rank: 
Match Code: 

```
2  1  1  0  1
2  1  2
2  2  1  2
1  3
2  2  3
3  2  2
1  1  0
2  1  1
2  1  1
3  1  1
0  1  1
1  1
1  1
2
3  1  1
0
2  2  2
0  1
2  2  1
```
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

```
2 1 1 0 1 2 1
2 1 2 2 1 1
2 2 3 1 2 1
2 1 2 2 1 3
1 1 2 1 3 3
3 3 2 2 2 1
1 1 1 1 1 0
1 2 1 2 2 1
1 1 1 1 3 3
1 1 1 2 2 1
3 1 1 0 1 1
2 2 2 1 1
2 3 0 1 2 2
```
8. Slitherlink [Turkey - Fatih Kamer Anda]
Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

```
 2  1 1  0 1  2 1
 2 1 2
 2 2  3  1 2 0
 1  1  2
 3  2 1 3 2 1  3
 3 2  2  2  1  3
 1  1  1  1 0
 1  2 1 2 2 1  3
 1  1  2
 3 1 1  0  1  1
 2  2 2  1  1
 2 3  0 1  2 2  1
```
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

Competitor Name: (spare)
8. Slitherlink [Turkey - Fatih Kamer Anda]
Draw a single, non-intersecting loop that only consists of line segments between the
dots along the dotted lines. A number inside a cell indicates how many of the edges of
that cell are part of the loop.

(spare)
8. Slitherlink [Turkey - Fatih Kamer Anda]

Draw a single, non-intersecting loop that only consists of line segments between the dots along the dotted lines. A number inside a cell indicates how many of the edges of that cell are part of the loop.

```
2  1 1  0 1  2 1
2 1 2  2 1 1
2  2 3  1 2 0
 1  2  2  2
 3  2 1 3 2 1
 3 2  2  2  1
 1  1  1  1 0
 1  2 1 2 2 1
 1  1  1  2
 3 1 1  0  1  1
 2  2 2  1  1
 2 3  0 1  2 2 1
```
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Ken Endo
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Thomas Snyder

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Tomoya Kimura
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: Hideaki Jo

Match Code:

Heat:

Bracket:

Seed:

Rank:
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Nikola Zivanovic

Heat: 5
Bracket: 
Seed: 
Rank: 
Match Code: 

2 4
5 2 3 4
3 3 4 1 3 1 2 2
2 3 2 3 1 3 1 2 2
2 4 2 4 1 4 4
**Backup A. Tapa [Turkey - Serkan Yürekli]**

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No $2 \times 2$ group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in *no particular order*. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

**Competitor Name:**

Kota Morinishi

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

**Match Code:**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Seed:**

6

**Bracket:**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Rank:**

6
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Bram de Laat

Match Code:
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

Walker Anderson
### Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in *no particular order*. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

### Competitor Name:

**Michael Ley**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

- Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.
- Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in *no particular order*. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.
**Backup A. Tapa [Turkey - Serkan Yürekli]**

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in *no particular order*. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

**Competitor Name:**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4</td>
<td></td>
<td>5</td>
<td>2 3</td>
<td>4</td>
</tr>
<tr>
<td>3 3</td>
<td>4</td>
<td>1 3 1</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>2 3</td>
<td>2 3</td>
<td>1 3 1</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>2 4</td>
<td>2 4</td>
<td>1 4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Yuki Kawabe
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No $2\times2$ group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in *no particular order*. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

**Competitor Name:**

(spare)
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

<table>
<thead>
<tr>
<th>Competitor Name:</th>
<th>Match Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>(spare)</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat:</th>
<th>Bracket:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seed:</th>
<th>Rank:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 4</th>
<th>5</th>
<th>2 3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3</td>
<td>4</td>
<td>1 3</td>
<td>1 2</td>
</tr>
<tr>
<td>2 3</td>
<td>2 3</td>
<td>1 3</td>
<td>2 2</td>
</tr>
<tr>
<td>2 4</td>
<td>2 4</td>
<td>1 4</td>
<td>4</td>
</tr>
</tbody>
</table>
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name:

(spare)
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2×2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

Competitor Name: (spare)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Heat:  
Bracket:  
Seed:  
Rank:  
Match Code:  

Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in *no particular order*. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

**Competitor Name:**

(spare)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Backup A. Tapa [Turkey - Serkan Yürekli]

Shade some empty cells black; cells with numbers cannot be shaded. All black cells connect along edges to create a single connected region. (It is permissible for the region to touch itself at a corner, but touching at a corner does not connect the region.) No 2x2 group of squares can be entirely shaded black.

Numbers in a cell indicate the lengths of contiguous black cell groups along the “ring” of 8 cells touching that cell (fewer for cells along the outside edge). If there is more than one number in a cell, then there must be at least one white (unshaded) cell between the black cell groups. The numbers are given in no particular order. As a special case, if the number given in a cell is a zero (0), it means that none of the cells around that cell may be shaded black.

<table>
<thead>
<tr>
<th>Competitor Name:</th>
<th>Match Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(spare)</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

Competitor Name:

Thomas Snyder

Heat: 
Bracket: 
Seed: 2 
Rank: 
Match Code: 

5

6

7

8
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

Competitor Name: Hideaki Jo

Heat: 4
Bracket: 
Seed: 
Rank: 
Match Code: 

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

### Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Competitor Name:**

Nikola Zivanovic
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

Kota Morinishi
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

Competitor Name: Bram de Laat

Match Code:
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competitor Name: Walker Anderson
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

Competitor Name: Michael Ley

Seed: 9

Heat: Bracket:

Rank:

Match Code:
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

(spore)
Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>6</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>7</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>8</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competitor Name: (spare)
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.
Backup B. Gaps (No Touch) [Germany - Jonas Gleim]

Blacken some cells in the grid such that each row and each column contains exactly two blackened cells. The numbers to the left of (or above) the grid indicate the number of unblackened cells between the blackened cells in that row (or column). Blackened cells may not touch each other, not even diagonally.